173 research outputs found

    Influence of Q-angle on lower extremity coordination during curve running.

    Get PDF
    The purpose of this study was to examine the effects of Q-angle on running curve kinematics and kinetics. Each dependent variable was evaluated for statistically significant differences using a two factor mixed analysis of variance with repeated measures on the track curve variable. A significance level of P \u3c 0.05 was employed for the evaluations. Independent variables were curve radius and Q-angle. Dependent variables included peak vertical force, time of peak vertical force, average vertical force, vertical impulse, continuous relative phase, and variability of continuous relative phase. Three levels of curve radius were used: straightaway, 36.5 m, and 18.5 m. The conclusions of this study are that runners with high Q-angles are not at greater risk for injury than runners with low Q-angles. Furthermore, all runners, regardless of individual Q-angle measurement, may be at increased risk of injury while repetitively running curves. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2001 .L43. Source: Masters Abstracts International, Volume: 40-03, page: 0634. Adviser: W. Marino. Thesis (M.H.K.)--University of Windsor (Canada), 2001

    Sustainable urban environments research dialogues

    Get PDF

    Groundwater flow paths drive longitudinal patterns of stream dissolved organic carbon (DOC) concentrations in boreal landscapes

    Get PDF
    Preferential groundwater flow paths can influence dissolved organic carbon (DOC) concentration and export in the fluvial network because they facilitate the inflow of terrestrial DOC from large upslope contributing areas to discrete sections of the stream, referred to as discrete riparian inflow points (DRIPs). However, the mechanisms by which DRIPs influence longitudinal patterns of stream DOC concentrations are still poorly understood. In this study, we ask how DRIPs affect longitudinal patterns of stream DOC concentrations under different hydrologic conditions, as they can simultaneously act as major sources of terrestrial DOC and important locations for in-stream processes. To answer this question, we tested four model structures that account for different representations of hydrology (distributed inflows of DRIPs vs. diffuse groundwater inflow) and in-stream processes (no DOC uptake vs. in-stream DOC uptake downstream of DRIPs) to simulate stream DOC concentrations along a 1.5 km headwater reach for 14 sampling campaigns with flow conditions ranging from droughts to floods. Despite the magnitude and longitudinal patterns of stream DOC concentration varying across campaigns, at least one model structure was able to capture longitudinal trends during each campaign. Specifically, our results showed that during snowmelt periods or high-flow conditions (> 50 L s(-1)), accounting for distributed inputs of DRIPs improved simulations of stream DOC concentrations along the reach, because groundwater inputs from DRIPs diluted the DOC in transport. Moreover, accounting for in-stream DOC uptake immediately downstream of DRIPs improved simulations during five sampling campaigns that were performed during spring and summer, indicating that these locations served as a resource of DOC for aquatic biota. These results show that the role of DRIPs in modulating DOC concentration, cycling, and export varies over time and depends strongly on catchment hydrology. Therefore, accounting for DRIPs can improve stream biogeochemistry frameworks and help inform management of riparian areas under current and future climatic conditions

    Impact of calibration errors on CMB component separation using FastICA and ILC

    Full text link
    The separation of emissions from different astrophysical processes is an important step towards the understanding of observational data. This topic of component separation is of particular importance in the observation of the relic Cosmic Microwave Background Radiation, as performed by the WMAP satellite and the more recent Planck mission, launched May 14th, 2009 from Kourou and currently taking data. When performing any sort of component separation, some assumptions about the components must be used. One assumption that many techniques typically use is knowledge of the frequency scaling of one or more components. This assumption may be broken in the presence of calibration errors. Here we compare, in the context of imperfect calibration, the recovery of a clean map of emission of the Cosmic Microwave Background from observational data with two methods: FastICA (which makes no assumption of the frequency scaling of the components), and an `Internal Linear Combination' (ILC), which explicitly extracts a component with a given frequency scaling. We find that even in the presence of small calibration errors with a Planck-style mission, the ILC method can lead to inaccurate CMB reconstruction in the high signal-to-noise regime, because of partial cancellation of the CMB emission in the recovered map. While there is no indication that the failure of the ILC will translate to other foreground cleaning or component separation techniques, we propose that all methods which assume knowledge of the frequency scaling of one or more components be careful to estimate the effects of calibration errors.Comment: 13 pages, 5 figure

    Realising transition pathways for a more electric, low-carbon energy system in the United Kingdom: challenges, insights and opportunities

    Get PDF
    The United Kingdom has placed itself on a transition towards a low-carbon economy and society, through the imposition of a legally-binding goal aimed at reducing its ‘greenhouse gas’ emissions by 80% by 2050 against a 1990 baseline. A set of three low-carbon, socio-technical transition pathways were developed and analysed via an innovative collaboration between engineers, social scientists and policy analysts. The pathways focus on the power sector, including the potential for increasing use of low-carbon electricity for heating and transport, within the context of critical European Union developments and policies. Their development started from narrative storylines regarding different governance framings, drawing on interviews and workshops with stakeholders and analysis of historical analogies. The quantified UK pathways were named Market Rules, Central Co-ordination and Thousand Flowers; each reflecting a dominant logic of governance arrangements. The aim of the present contribution was to use these pathways to explore what is needed to realise a transition that successfully addresses the so-called energy policy ‘trilemma,’ i.e. the simultaneous delivery of low carbon, secure and affordable energy services. Analytical tools were developed and applied to assess the technical feasibility,social acceptability, and environmental and economic impacts of the pathways. Technological and behavioural developments were examined, alongside appropriate governance structures and regulations for these low-carbon transition pathways, as well as the roles of key energy system ‘actors’ (both large and small). An assessment of the part that could possibly be played by future demand side response was also undertaken in order to understand the factors that drive energy demand and energy-using behaviour, and reflecting growing interest in demand side response for balancing a system with high proportions of renewable generation. A set of interacting and complementary engineering and technoeconomic models or tools were then employed to analyse electricity network infrastructure investment and operational decisions to assist market design and option evaluation. This provided a basis for integrating the analysis within a whole systems framework of electricity system development, together with the evaluation of future economic benefits, costs and uncertainties. Finally, the energy and environmental performance of the different energy mixes were appraised on a‘life-cycle’ basis to determine the greenhouse gas emissions and other ecological or health burdens associated with each of the three transition pathways. Here, the challenges, insights and opportunities that have been identified over the transition towards a low-carbon future in the United Kingdom are described with the purpose of providing a valuable evidence base for developers, policy makers and other stakeholders

    Sustainable urban environments research dialogues

    Get PDF

    Rice Galaxy: An open resource for plant science

    Get PDF
    Background: Rice molecular genetics, breeding, genetic diversity, and allied research (such as rice-pathogen interaction) have adopted sequencing technologies and high-density genotyping platforms for genome variation analysis and gene discovery. Germplasm collections representing rice diversity, improved varieties, and elite breeding materials are accessible through rice gene banks for use in research and breeding, with many having genome sequences and high-density genotype data available. Combining phenotypic and genotypic information on these accessions enables genome-wide association analysis, which is driving quantitative trait loci discovery and molecular marker development. Comparative sequence analyses across quantitative trait loci regions facilitate the discovery of novel alleles. Analyses involving DNA sequences and large genotyping matrices for thousands of samples, however, pose a challenge to non−computer savvy rice researchers. Findings: The Rice Galaxy resource has shared datasets that include high-density genotypes from the 3,000 Rice Genomes project and sequences with corresponding annotations from 9 published rice genomes. The Rice Galaxy web server and deployment installer includes tools for designing single-nucleotide polymorphism assays, analyzing genome-wide association studies, population diversity, rice−bacterial pathogen diagnostics, and a suite of published genomic prediction methods. A prototype Rice Galaxy compliant to Open Access, Open Data, and Findable, Accessible, Interoperable, and Reproducible principles is also presented. Conclusions: Rice Galaxy is a freely available resource that empowers the plant research community to perform state-of-the-art analyses and utilize publicly available big datasets for both fundamental and applied science

    Some like it hot: population-specific adaptations in venom production to abiotic stressors in a widely distributed cnidarian

    Get PDF
    Background: In cnidarians, antagonistic interactions with predators and prey are mediated by their venom, whose synthesis may be metabolically expensive. The potentially high cost of venom production has been hypothesized to drive population-specific variation in venom expression due to differences in abiotic conditions. However, the effects of environmental factors on venom production have been rarely demonstrated in animals. Here, we explore the impact of specific abiotic stresses on venom production of distinct populations of the sea anemone Nematostella vectensis (Actiniaria, Cnidaria) inhabiting estuaries over a broad geographic range where environmental conditions such as temperatures and salinity vary widely. Results: We challenged Nematostella polyps with heat, salinity, UV light stressors, and a combination of all three factors to determine how abiotic stressors impact toxin expression for individuals collected across this species’ range. Transcriptomics and proteomics revealed that the highly abundant toxin Nv1 was the most downregulated gene under heat stress conditions in multiple populations. Physiological measurements demonstrated that venom is metabolically costly to produce. Strikingly, under a range of abiotic stressors, individuals from different geographic locations along this latitudinal cline modulate differently their venom production levels. Conclusions: We demonstrate that abiotic stress results in venom regulation in Nematostella. Together with anecdotal observations from other cnidarian species, our results suggest this might be a universal phenomenon in Cnidaria. The decrease in venom production under stress conditions across species coupled with the evidence for its high metabolic cost in Nematostella suggests downregulation of venom production under certain conditions may be highly advantageous and adaptive. Furthermore, our results point towards local adaptation of this mechanism in Nematostella populations along a latitudinal cline, possibly resulting from distinct genetics and significant environmental differences between their habitats.publishedVersio

    A practical and general amidation method from isocyanates enabled by flow technology

    Get PDF
    The addition of carbon nucleophiles to isocyanates represents a conceptually flexible and efficient approach to the preparation of amides. This general synthetic strategy has, however, been relatively underutilized, due to narrow substrate tolerance, and the requirement for less favourable reaction conditions. Herein, we disclose a high‐yielding, mass efficient, and scalable method with appreciable functional group tolerance for the formation of amides by reaction of Grignard reagents with isocyanates. Through the application of flow chemistry, and the use of sub‐stoichiometric amounts of CuBr2, this process has been developed to encompass a broad range of substrates, including reactants found to be incompatible with previously published protocols
    corecore